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In the Department of Engineering and Management at Instituto Superior Técnico, the master’s thesis
defence scheduling is the responsibility of the department’s secretary. The aim of this work is to automate
that process. The problem is formulated as a mixed integer linear programming model, with four objec-
tives. The first maximises the number of defences to be scheduled. The second prioritises the satisfaction
of individual preferences, the third minimises the number of times committee members must travel to
the Taguspark Campus and, lastly, the fourth promotes the compactness of the schedules. Two different
approaches to solve the model are introduced, the Two Stage a Priori Approach and the Two Stage
Augmented ε - Constraint Approach. Both include a first stage where the maximum number of thesis
defences that can be scheduled is found and then set as a hard constraint for the second stage. The second
stage is where the approaches differ, with the a Priori Approach including the remaining three objectives
in a single weighted objective function and the Augmented ε - Constraint Approach presenting several
Pareto Optimal solutions. The usefulness of the first stage is proven in the computational experiments,
as instances where not all thesis defences could be scheduled appeared. Furthermore, even in the largest
tested instances, this stage never took more than one minute to solve. As for the second stages, the
Augmented ε - Constraint Approach takes considerably longer times to solve than its counterpart, which
is the trade-off for being able to know more possible solutions of the Pareto set.
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1 Introduction

Instituto Superior Técnico (IST), as part of the University of
Lisbon, must adhere to the country’s regulations regarding
second study cycle degree courses and dissertation discus-
sions. These are all currently described in (1), which has
been emitted after an assessment of the Portuguese higher
education system, requested by the government to the Or-
ganisation for Economic Co-operation and Development.

Thus, IST has a set of rules, in compliance with the Por-
tuguese Law, that oversees the whole process for obtaining
a master’s degree and conducting a dissertation in the in-
stitution. Each year, a timeline for all the necessary steps
to undertake is published, going from the theme assignment
to the final discussion and grade issuing. Furthermore, the
general rule at IST is that the examination committees are
composed by three members: a chairperson, who must be
part of the department’s scientific committee; the disser-
tation supervisor, who must be a professor or researcher
at the university or a specialist recognized by the scientific
committee and who guides the students through the exe-
cution of their thesis and, finally, one or more additional
members who, just like the supervisor, must be professors
or researchers at the university or specialists recognized by
the scientific committee.

This work is focused on the Department of Engineering
and Management (DEG) at IST’s processes for scheduling
master thesis defences, which oversees both research work

and the bachelor’s (LEGI) and master’s (MEGI) Degree in
Industrial Engineering and Management at ist, as well as a
few other doctorate degree courses.

In the department in question, the secretary oversees the
scheduling of all the dissertation discussions of the MEGI.
This is a time-consuming task where it is not possible to
always comply with the preferences of all the affected, spe-
cially considering that all the defences take place at the
Taguspark Campus, whereas a good portion of the profes-
sors has their regular offices in a different campus. Thus,
they usually schedule their examination committees while
trying to reduce their movements, by minimizing the num-
ber of days when they must be present for a discussion.

Each year, two different deadlines are set for submitting
dissertations. Consequently, during that time, there is an
overload of work to the department’s secretary, with up to 34
thesis defences having had to be scheduled in a single month
in 2019. To define priorities, there is usually a preference
given to the chairpersons, who usually have more defences
to be present at, with an average of 5.70 discussions per year
per chairperson, in contrast to the 2.26 per supervisor and
1.74 per additional member, disregarding their presence in
other roles within the examination committee.

Thesis defence scheduling is a recent branch within the
academic scheduling field which has recently been receiv-
ing increased attention. However, it is still evident that the
research on this topic is not as extensive as it is for other
academic scheduling branches, namely, exam scheduling and
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course timetabling. Thus, there is space to study and add
to the literature on this field by comparing it to the de-
velopments that have been done in its academic scheduling
counterparts and applying it to different instances.

Accordingly, the aim of this thesis is to automate this
process at the DEG at IST by proposing an optimization
method which is fair for all the examination committee
members, satisfies their individual requests and reduces the
number of times they need to move themselves to the Tagus-
park Campus, while promoting compact schedules for com-
mittee members, allowing for better quality schedules than
the current process and reducing the workload of the depart-
ment secretary. If the resulting method is deemed viable and
produces satisfactory results for the scope of the problem, it
should be possible to adapt the model to other departments
of ist.

2 Literature Review

While the literature on other Academic Scheduling prob-
lems is quite vast and well-developed, there are only five
other works on the thesis scheduling problem as far as the
author is aware.

A few different approaches have been taken to tackle this
problem, namely genetic algorithm (8), local search (9; 6),
optimization models (7; 3) and simulated annealing (3).

There are some similarities between the scheduling pro-
cess for all universities, leading to universal constraints
present in all the literature so far, specifically:

• Every master thesis defence must be scheduled;
• The examination committee members cannot be

present in two defences at the same time;
• Rooms cannot hold more than one defence at the same

time;
• The assigned professors must be available at the time

of the defence.
In addition to the aforementioned constraints all uni-

versities have different examination committee compositions
that the models must take into consideration. In most cases,
the examination committee of each thesis is composed by a

set number of members, usually three (9; 7) or five (8; 6),
with their respective functions. Nonetheless, in the case of
the University of Udine (3), this number may vary from
seven up to ten according to some rules. For all the stated
cases, there are some members of the examination commit-
tee that must attend some defences, and the rest is chosen
by the proposed models. Typically, some examination com-
mittee members are assigned to individual time slots for the
defences that they must attend (8; 9; 6; 7), however, there
are also cases where some members of the examination com-
mittee are assigned to complete sessions of several defences
instead (9; 7) and one case where all the examination com-
mittee members are assigned through this method (3).

The most common objectives are reducing or evening out
the total workload of the professors (9; 6; 7; 3) and creat-
ing more compact schedules for the examination committee
members (8; 9; 7). Furthermore, the suitability between the
theme of a thesis and the examination committee assigned
to it is considered in some of them (8; 6; 3), as well as reduc-
ing the changes in the classrooms(8) and adding a reserve
day when defences should not be scheduled (7).

The number of students varies between the cases, rang-
ing from a minimum of 9 (8; 6) to a maximum of 551 (3).
Nonetheless, the ratios between the number of professors
and defences to be scheduled, show little variance, normally
ranging between 1 and 2 with some exceptions. The times-
pan for the scheduling of all defences is usually less than one
week, except for the University of Udine (3) case where it
can go up to 33 days.

Due to size disparity as well as different objectives and
examination committee composition it is not possible to di-
rectly compare most cases with each other to understand
which approaches are the most efficient at solving the prob-
lem, nonetheless in (3) three different models were proposed
in order to get a better grasp of this issue. The authors con-
cluded that constraint programming was not a good fit for
their problem, and that integer programming would outper-
form other methods with real world samples.

A comparison between the previous literature and this
work is presented in Table 1.

Table 1: Summary of the Literature on Thesis Defence Scheduling Problems

Solution Examination Committe
Method Assignment Objectives

Paper GA LS IP SA Preset Mixed 1) 2) 3) 4) 5) 6) 7)

(8) X X X X X X
(9) X X X X
(6) X X X X
(7) X X X X X
(3) X X X X X

Present Work X X X X X

Solution Method: GA) Genetic Algorithm; LS) Local Search; IP) Integer Programming; SA) Simulated Annealing

Objectives: 1) Minimise or even out workload for professors; 2) Maximise the suitability between the subject of the thesis and

the assigned examination committee; 3) Compactness of the schedule; 4) Minimise the number of thesis scheduled in the reserve

day; 5) Minimise the overlap between a session that a professor must attend with their busy time; 6) Personalised individual

professor preferences; 7) Minimise the unscheduled thesis defences
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Given the characteristics of the case at hand, a review
on the literature on important concepts such as preference
modelling and scheduling for fairness was also conducted.
With other works from the other academic scheduling prob-
lems and other unrelated scheduling fields being analysed.

In course timetabling, introducing individual preferences
is not uncommon, with works such as (18; 15; 14) and
(23) including professors individual requests in their for-
mulations. Furthermore, in healthcare related scheduling
problems this concept also occurs. For example, in home
health care problems where the goal is to optimize the op-
erational costs of the companies (4; 19; 24), patient admis-
sion problems which aim to assign patients to hospital beds
(22), nurse rostering problems with the objective of allot-
ting shifts to nurses (16) and operating theatre timetabling
problems which seek to schedule surgeries (13).

Similarly to most cases in this section, the thesis de-
fence scheduling case at IST combines general rules and in-
dividual requests, thus it becomes necessary to find solu-
tion approaches that take this into consideration, given the
multi-objective nature of the problem. Furthermore, there
were some interesting concepts that might be of use, such
as distinction between different staff regarding the positions
they occupy (23; 24), incremental penalties for cases where
one user is assigned several least preferred time slots (13) or
the penalization of requests that are deemed detrimental to
other users if they were to be complied with (18).

Ensuring fairness amongst all schedules for each com-
mittee member is an almost impossible task, still there are
mechanisms that can work towards such a goal. Besides pa-
pers from academic scheduling problems (17; 9; 6; 23; 7; 5; 3;
10), other areas that focus on this goal were also reviewed,
namely are healthcare (20), traffic flow management in an
airport (2) and scheduling of earth observations made by a
satellite (21).

Two different groups of fairness goals can be identified
in the literature. The intent of the first one is to create
models in a way that is as respectful to the right to equality
of all the affected as possible, be it by evening out work-
loads (20; 9; 6; 3), the spread of events (17; 5; 10), the
assignment of undesirable time slots (13) or the profit each
individual can take from the scheduling (21). The aim of the
second group is to differentiate each affected by the schedul-
ing based on certain characteristics, such as order in which a
request was made, in a first-come first served basis (2), posi-
tion of the professional (23) or the number of predetermined
events someone must attend (7).

In the thesis defence scheduling problem at IST, cases
where both fairness groups can be applied are found. Firstly,
there is a clear distinction between the groups that com-
pose the examination committee, that is, the chairperson,
supervisor and examiner as well as a distinction between
the number of thesis each of the professors must attend, al-
luding to a second fairness goals group. Nevertheless, there
are some members within each of the aforementioned groups
that have similar starting characteristics, which might en-
tail some consideration regarding the usefulness of the first
fairness group goals and methods in this case as well.

3 Mathematical Model

3.1 Problem Description

The main goal of the Thesis Defence Scheduling problem
is to find a schedule that assigns each defence (or as many
as possible) to a given time slot while respecting some con-
straints, such as the availability of committee members or
rooms.

As previously stated, the examination committees for
the MEGI defences are composed by three members, who
must all be available at the time the defence is scheduled.
They are the chairpersons, the supervisors and an addi-
tional member. Since MEGI defences are held in the Tagus-
park Campus, often committee members have to travel there
solely for the purpose of being present for a dissertation dis-
cussion. For this reason, one of the most pressing issues
while scheduling the master’s thesis defences is to guarantee
that each member has defences scheduled in as few days as
possible. Furthermore, it is also a frequent occurrence that
committee members might have different preference levels
for different days or times and, although being available
at a certain time if that is necessary, they would rather be
scheduled for a different one. Additionally, they also usually
prefer to have all their defences in a row, having as much of
a compact schedule as possible.

Thus, four different objectives that affect the quality of a
proposed schedule can be identified. Firstly, there is the ob-
jective of scheduling as many defences as possible, which is
commonly referred to as a hard constraint in the literature,
in cases where it is known, prior to the scheduling process,
that all discussions can be scheduled. Moreover, it is also
paramount that the number of days a member is scheduled
for is minimised, the individual preferences for time slots are
taken into account and that the schedules are as compact
as possible.´

3.2 Problem Formulation

The problem was modelled as a mixed integer linear pro-
gramming model, with multiple objectives. Let T denote
the set of thesis defences that need to be scheduled. These
thesis defences must be scheduled inside a defined set of days
D. Moreover, within each day, only certain times, regarded
as H, are available for a defence to start at. For the purpose
of this work, time is divided into slots of 15 minutes, that
is, if hour 0 is the first available time for a defence to start,
hour 1 is the time 15 minutes after hour 0, as that is how
the thesis defences are currently scheduled, that is they can
start at minutes 0, 15 30 and 45 of any given hour. Each
defence, has already been assigned three committee mem-
bers. They can be either its chairperson, the supervisor or
an additional member. This set of three positions is repre-
sented as P. Moreover, the set of all committee members is
denoted as M.

A necessity to differentiate some members from the oth-
ers in terms of their importance for scheduling purposes was
identified, which is achieved by considering different weights
to be applied. Specifically, there is the case of the chair-
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persons, who have a higher average number of defences to
attend and, for which, the weight is defined as MWW. Fur-
thermore, there might be other reasons for assigning dif-
ferent scheduling weights to committee members, such as
members who do not teach or often travel to the Taguspark
Campus, therefore, a second weight OW, to distinguish be-
tween members was added. Allowing the decision-maker to
instead set the weight for each individual member was con-
sidered, but that would lead to many other fairness consid-
erations as well as a more arduous process, thus, only these
two categories to distinguish between members in different
positions were added.

Moreover, the possibility of assigning different prefer-
ence levels each member has for certain time-slots is also
regarded in the model, with the addition of the parameter
HP. This parameter assigns, for each committee member
and time-slot, an integer number representing their prefer-
ence, with larger numbers representing larger preference lev-
els. Furthermore, to represent unavailability, the assigned
level should be 0.

As the main purpose of this problem is to schedule the-
sis defences, in other words, assigning them to time-slots,
the main decision variables represent this process. Thus, let
Xtdh

be a binary variable that takes the value 1 if thesis
defence t ∈ T is scheduled for day d ∈ D and to start at
hour h, and 0 otherwise.

Furthermore, to assign values to some objective func-
tions, two groups of auxiliary variables were added. Firstly,
there is the group that will aid in minimizing the number
of days a member has discussions scheduled on, comprised
by the integer variable Gm and the binary variables Ymd
and GQmq. Note that the set Q, representing the possi-
ble options for numbers of days jury members have defences
scheduled on, was added to aid in the definition of these
variables as well as another parameter B, which represents
the maximum number of days a member can have a thesis
scheduled on.

3.2.1 Structural Integrity Constraints

There are four different structural integrity constraints.
Firstly, there is the constraint that guarantees that a de-
fence cannot be scheduled more than once (1). Secondly,
there are two constraints that ensure the availability of com-
mittee members for the time-slots they are scheduled at.
This is achieved by making sure that no defence they are
scheduled for occurs at a time when they have stated to be
unavailable (2). Furthermore, it is also necessary to guar-
antee that committee members have no juxtaposed defences
(3). Finally, there is a constraint that ensures that there are
no more thesis defences at a time than rooms available (4).

T∑
t=0

Xtdh ≤ 1 ∀ d ∈ D,h ∈ H (1)

Xtdh ≤ HPCMtpdh ∀ t ∈ T, p ∈ P, d ∈ D,h ∈ H (2)

Xtdh +

L−1∑
l=0

Xt1,d ,h−l≤1 ∀ t ∈ T, t1 ∈ T,

d ∈ D,h ∈ H, t 6= t1, ICMt,t1 = 1 (3)

T∑
t=0

L−1∑
l=0

Xt,d,h−l ≤ R ∀ d ∈ D,h ∈ H (4)

3.2.2 Taguspark Campus Presence Constraints

The Taguspark Campus presence constraints (5)–(10) set
the values for variables Ymd, Gm and GQmq.

The first two constraints, (5) and (6), set the value for
the binary variable Ymd. The first of them ensures that in
case there are no thesis defences with member m as part of
their committee scheduled for day d, then Ymd is 0. On the
contrary, the second constraint guarantees that if there is
at least one discussion that committee member m is part of
scheduled for day d, then Ymd is 1. Gm is an integer vari-
able that represents the number of days committee member
m has discussions scheduled on (7), furthermore, it is neces-
sary to its upper bound (8). To finish, the value of GQmq is
set by two constraints, (9) and (10). The first one ensures
that each member is assigned exactly one number of days
to be present for a discussion, whereas the second finds out
which number to assign each committee member.

T∑
t1=0

H∑
h=0

Xt1,d,h ≥ YCMtpd ∀ t ∈ T, p ∈ P, d ∈ D, ICMt,t1 = 1

(5)
Xtdh ≤ YCMtpd ∀ t ∈ T, p ∈ P, d ∈ D,h ∈ H (6)

D∑
d=0

Ymd = Gm ∀ m ∈M (7)

Gm ≤ B ∀ m ∈M (8)

Q∑
q=0

GQmq = 1 ∀ m ∈M (9)

Q∑
q=0

GQmq × q = Gm ∀ m ∈M (10)

3.2.3 Compactness Constraints

The compactness constraints, (11)–(15), are intended to
provide a measure of schedule compactness by setting the
values for variables Ctdh and Ztdh.

Thus, to measure this, we start by counting how many
committee members of a certain thesis defence t have had
another thesis defence t1 end within the compactness zone
CZ and, then, weigh their scheduling weight based on them
being either a chairperson or being in another situation that
warrants a different level of attention as well as the weight of
the corresponding position on the compactness zone. This
is done for every thesis and every time slot in constraint
(11), with Ctdh being the integer variable that represents
this measure.
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Therefore, Ctdh measures the potential compactness im-
pact of scheduling a thesis defence in a certain time slot.
Nonetheless, to later evaluate how the schedule is perform-
ing regarding the objective, only the values of the variable
for time slots that have been assigned to the referred the-
sis should be counted. Thus, a big-M approach was taken,
and implemented in constraints (12)–(15) with Ztdh, which
essentially represents the multiplication of Ctdh and Xtdh,
taking the value of Ctdh if thesis t is scheduled on day d at
hour h, and 0 otherwise.

Note that it is paramount that the big-M is as small as
possible, preferably the upper bound to the corresponding
variables. For the case at hand, this value can be found
by multiplying MWW, OW, the biggest value for CZW and
the number of different positions in the set P, as this is the
biggest value Ctdh and, by extension Ztdh, can take. Fur-
thermore, it is important to take this into account when
defining the weights MWW, OW and CZW, as, the larger
they are, the larger the big-M is, which may impact the
complexity when solving the model.

Ctdh =

T∑
t1=0

M∑
m=0

CZ∑
cz=0

MWm ×Om × CZWcz

×Xt1,d,h−L−cz ∀ t ∈ T, d ∈ D,
h ∧ h− L− cz ∈ H, cz ∈ CZ,m ∈ CMt ∧ CMt1, t 6= t1

(11)

Ztdh ≥ 0 ∀ t ∈ T, d ∈ D,h ∈ H (12)

Ztdh ≤ Ctdh ∀ t ∈ T, d ∈ D,h ∈ H (13)

Ztdh ≤ BM ×Xtdh ∀ t ∈ T, d ∈ D,h ∈ H (14)

Ztdh ≥ Ctdh−BM×(1−Xtdh) ∀ t ∈ T, d ∈ D,h ∈ H (15)

3.2.4 Objectives

For the case at hand, four different objectives to be max-
imised were considered. The first objective (16) regards the
scheduling of the highest number of thesis defences possible.
This sort of objective is more often than not approached as
a hard constraint in the literature. Nonetheless, to be able
to deal with possible data sets where some defences are not
possible to schedule, it was regarded as an objective instead.

Max

T∑
t=0

D∑
d=0

H∑
h=0

Xtdh (16)

The second objective (17) regards the maximisation of
individual preferences for time slots, which can be, for ev-
ery time slot, 0, if the member is unavailable at the time,
or any other preference level the decision-maker chooses to
implement, as long as they are integer and non-negative.

Max

T∑
t=0

P∑
p=0

D∑
d=0

H∑
h=0

OCMtp ×MWCMtp ×HPCMtpdh×Xtdh

(17)
The third objective (18) concerns the minimisation of the
number of days members are scheduled to attend a defence,
which, to facilitate the use of multi-objective approaches
further on, we instead write as a maximisation objective.
Furthermore, it introduces the possibility of including an
exponential penalty for each additional day a member has
a defence scheduled on, without compromising the linearity
of the model. This improves fairness for each member, as it
makes it less likely that the solution greatly benefits some
members in this regard in the detriment of others, while ex-
cluding solutions that just create a worse schedule for one
member, without improving the situation of another in the
pursuit of fairness.

Max−
M∑
m=0

Q∑
q=0

Om ×MWm ×GQmq × qEXP (18)

Lastly, as was previously explained, the fourth objective (19)
regards the maximisation of the compactness of schedules.
To achieve this, each thesis t is assigned a value Z depend-
ing on the time slot where it is scheduled. This value can
go from 0, if none of its committee members had a defence
finishing at the time this one is starting, up to the num-
ber of different members in a committee times the biggest
value present in the list MWm, which is the weight MWW,
times the biggest value present in the list Om, which is the
weight OW, times the biggest value in the list CZW, if all
of its members comply with the aforementioned conditions
and are given the highest values in those parameters. Since
these values are already included in the variable Ztdh they
do not need to be multiplied by in the objective as was seen
in the previous two (17; 18).

Max
T∑
t=0

D∑
d=0

H∑
h=0

Ztdh (19)

In order to be fair, the chairpersons of the committees,
who have been prioritised in the past, the decision-maker
has the ability to set a different weightMWm for these mem-
bers for the objectives (17), (18) and (19). Furthermore,
there is also the possibility of setting different weights Om
for members who do not teach or often travel to the Tagus-
park Campus or for other reasons the decision-maker deems
necessary.

4 Solution Approach

4.1 Two Stage Multi-objective Optimisa-
tion Strategy

For the case at hand, the objective of maximising the num-
ber of thesis defences scheduled (16) can be clearly iden-
tified as the primary one. Regardless of the values of the
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other three objectives (17)–(19), the first one must always
have the highest possible value. To ensure this, a two stage
optimisation approach was taken. During the first stage,
the model finds the maximum number of thesis that can be
scheduled and saves that value as a new parameter named
TB. Then, in the second stage, a constraint setting that
value for the number of thesis to be scheduled is added to
the model, effectively turning that objective into a new hard
constraint (20).

T∑
t=0

D∑
d=0

H∑
h=0

Xtdh = TB (20)

Furthermore, two different strategies to solve the second
stage of the model were implemented and made available
to the decision-maker. The first takes an a priori approach
to the multi-objective problem, whereas the second one uses
a ε-constraint based approach, based on the works (11) and
(12) and which the authors name AUGMECON.

4.2 a Priori Optimisation Approach - Sec-
ond Stage

As this is an approach based on an a priori method, it
requires the decision-maker to indicate weights for each ob-
jective before the model is solved, and then, based on those
combinations, calculate the optimal solution of a weighted
single objective function. This allows the problem to be
simplified, by turning its remaining three objectives into a
single one (21) that can be maximised without any addi-
tional considerations.

Max

HPW×
T∑
t=0

P∑
p=0

D∑
d=0

H∑
h=0

OCMtp×MWCMtp×HPCMtpdh×Xtdh

−GW ×
M∑
m=0

Q∑
q=0

Om ×MWm ×GQmq × qEXP

+ ZW ×
T∑
t=0

D∑
d=0

H∑
h=0

Ztdh (21)

Thus, the following three weights were added to the
model:

• HPW - Weight regarding the objective of maximizing
the preferences of each member regarding time slots
(17);

• GW - Weight regarding the objective of minimizing
the number of days a member is scheduled on (18);

• ZW - Weight regarding the compactness of schedules
objective (19)

4.3 Augmented ε - Constraint Approach -
Second Stage

For further understanding of the employed approach, the
reader is deferred to the works (11) and (12).

To implement the AUGMECON algorithm to the MEGI
thesis defence problem, several new parameters and vari-
ables are necessary.

As both objectives (17) and (19) are the ones being
bounded, the main objective to be maximised is the ob-
jective (18). The positions from each objective are inter-
changeable.

First, the ε parameter must be defined. The algorithm
was implemented considering a value greater than 0 and
lower than or equal to 0.5. Furthermore, while this is not
necessary for the algorithm to run properly, the value of 1

ε
should be an integer number, so that the final iteration cor-
responds to a slack variable equal to 0. Moreover, it will be
necessary to know the maximum and set a minimum value
for the objectives that will enter the objective function as a
slack, as well as introducing the slack variables themselves.
Lastly, new parameters regarding lower bounds for certain
objectives will also be necessary.

After the first stage, the values for the new parameters
MP, MZ, NP and NZ have to be found. To find the maxi-
mum values, two iterations, corresponding to the maximisa-
tion of objectives (17) and (19), are necessary. These values
will be used to set the minimum values as well. Further-
more, it is necessary that these minimum values represent
points in the Pareto Front.

To ensure that, the strategy that was taken when find-
ing the worst values for objectives (17) or (19) was to set
the value for the opposite objective as its maximum and
then optimize the model considering as the objective func-
tion objective (18) plus either (17) or (19) multiplied by
an adequately small number, epss, which, for the case at
hand, was set as 10−4. Thus, to find NP, constraint (23) is
added to the model and objective (22) is maximised and, in
turn, to find NZ, constraint (25) is added to the model and
objective (24) is maximised.

Max−
M∑
m=0

Q∑
q=0

Om ×MWm ×GQmq × qEXP + epss

×
T∑
t=0

P∑
p=0

D∑
d=0

H∑
h=0

OCMtp
×MWCMtp

×HPCMtpdh ×Xtdh

(22)

T∑
t=0

D∑
d=0

H∑
h=0

Ztdh = MZ (23)

Max−
M∑
m=0

Q∑
q=0

Om ×MWm ×GQmq × qEXP + epss

×
T∑
t=0

D∑
d=0

H∑
h=0

Ztdh (24)

T∑
t=0

P∑
p=0

D∑
d=0

H∑
h=0

OCMtp
×MWCMtp

×HPCMtpdh×Xtdh = MP

(25)
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Before starting to search for solutions, it is also neces-
sary to define the slack variables sp (constraint 26) and sz
(constraint 27). They can be computed as the difference be-
tween the maximum values their respective objectives can
take and the values they are taking in a given iteration.

sp = MP−
T∑
t=0

P∑
p=0

D∑
d=0

H∑
h=0

OCMtp ×MWCMtp ×HPCMtpdh ×Xtdh

(26)

sz = MZ −
T∑
t=0

D∑
d=0

H∑
h=0

Ztdh (27)

The objective function 28 is the one being maximised
in every iteration of this method. It can be divided in two
parts, with the first one being the objective (18), which is
not bounded and thus is the one being optimised, and the
sum of the slack variables multiplied by eps, so that they
do not interfere with the value of the other objective. Note
that the slacks are divided by their respective maximum val-
ues, therefore, their sum will always be a number between
0 and 2, meaning that eps can be set as 10−1, as that will
be enough to guarantee that their values will not matter for
the other part of the objective function.

−
M∑
m=0

Q∑
q=0

Om×MWm×GQmq×qEXP +eps×(
sz

MZ
+

sp

MP
)

(28)
The method also has a specific mechanism to iterate between
different solutions. Just like the conventional ε - constraint
method, this mechanism is based on setting different com-
binations of lower bounds for the objectives, which, for the
case at hand, are objectives (17) and (19), and their lower
bounds are respectively LBP and LBZ. To guarantee that in
each iteration they are respected, the following constraints
are added to the model:

T∑
t=0

P∑
p=0

D∑
d=0

H∑
h=0

OCMtp
×MWCMtp

×HPCMtpdh×Xtdh ≥ LBP

(29)
T∑
t=0

D∑
d=0

H∑
h=0

Ztdh ≥ LBZ (30)

Moreover, what guarantees that different solutions are
searched is setting different values for LBP and LBZ in each
iteration. This is achieved by adding ε times the difference
between the maximum value of an objective and its worst
value every time a new iteration starts. At the start of the
method, both lower bounds are equal to their respective
worst values, then it was arbitrated that LBP is kept the
same for the following iteration and LBZ is incremented by
ε×(MZ−NZ), in every iteration, until LBZ is greater than
MZ, after which point its value is reset to NZ and LBP is

incremented once by ε × (MP −NP ). Afterwards, LBZ is
incremented again, until it is greater than MZ, and so on
and so forth, until LBP is greater than MP and the algo-
rithm stops. It is possible to foresee the maximum number
of solutions the algorithm can find based on the value of ε
and the number of objectives, which in this case is three. If
we represent the number of objectives as n, that number is
( 1
ε + 1)n−1, that is, for the case at hand, (1

ε + 1)2.

Furthermore, some of these iterations can be evaluated
before the model optimisation phase starts, as it is possible,
in some cases, to foresee if they will produce an equivalent
result to one already obtained, this being true for both past
solutions and combinations that were proven infeasible. In
cases like those, the method implements strategies to skip
those iterations.

5 Computational Experiments

All computational experiments were conducted using a In-
tel(R) Core(TM) i7-6500 CPU @ 2.50GHz2.59GHz and 8GB
of installed RAM. Moreover, the employed software was
Python 3.7 and Gurobi 9.0.0.

All instances used were randomly generated.

5.1 Instance Generator

Three different parameters that need to be generated were
identified. Firstly, there is the availability of the jury mem-
bers, represented by the parameter HPmdh, as well as
the composition of each committee, represented by CMtp.
Lastly, there is the list MWm, which represents different
weights for committee members.

5.2 Instances

All the instances were created for a time period of 20 days,
as well as 32 quarter-hours available each day for thesis de-
fences to start. Three major groups of instances were cre-
ated, the first one (A) corresponding to instances with 30
defences, the second (B) 40 defences and the last one (C)
with 50 defences. Moreover, within each of them, three
other subgroups were created, with the first one (1) hav-
ing a percentage of available time for committee members
of 20 percent, the second (2) 45 percent ant the last (3) 70
percent. Furthermore, for each of these instance subgroups,
three instances were randomly generated.

5.3 a Priori Two Stage Approach

5.3.1 First Stage

Out of the 27 instances tested, in 23 it was possible to sched-
ule the entirety of the discussions, proving the usefulness of
not setting the number of thesis defences to be scheduled
as an hard constraint from the start. Furthermore, in every
instance where this was not possible only one of the thesis
defences remained unscheduled. Every first stage optimisa-
tion took less than 1 minute.
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5.3.2 Second Stage

In 20 out of the 27 instances, it was able to achieve that
within the 3 hours time limit. While every instance with
45 availability percentage or less was solved, on the other
hand, none of the instances in group B3 and C3 were able
to reach a gap of 0%, whereas for group A3, instance 2 was
also not solvable within the time limit. The results point
to the expected conclusion that the number of thesis to be
scheduled influences the time it takes to solve the model,
with larger numbers making it harder to computationally
solve it, moreover, instances with more availability percent-
age took less time to solve, as it is easier for the model to
find solutions.

5.3.3 Number of Rooms

Firstly, we can see that for the tested instances, reducing the
number of available rooms never meant that more defences
would go unscheduled, instead, it simply led to more cases
where the committee members would have defences sched-
uled on more days, which led to a decrease in the value
of objective (18). It was possible to note a tendency for
a reduced model efficiency with the reduction of the num-
ber of rooms, especially when that leads to decreases in the
value of the objective function and overall quality of the

solution, this points to the conclusion that since there are
fewer rooms, it becomes harder to find suitable schedules
and therefore the computer took a longer time to solve the
problems.

5.3.4 Compactness Constraints

The compactness constraints were formulated with a re-
source to the big-M method. For most cases, the increase in
this value leads to a higher time to solve the instance. Fur-
thermore, there were two cases, both in Group B2, where
the increase to the maximum tested value (36) led to the in-
stances not being solvable within the three hour time limit.

Moreover, an increase from 12 to 24 and from 24 to
36, always led to an increase in the time it took to solve
the instances, meaning that the decision-maker must decide
on the trade-off between having more differentiation on the
weights employed. This is one of the limitations of the big
- M method, as it can in some cases lead to inefficiencies on
the branch and bound solvers. On the contrary, the same
is not true for the increase from 3 to 6 and 6 to 12. This
means that the values from the weights are important for
the model to distinguish between solutions that would other-
wise be equivalent and, sometimes, this effect ends up being
more beneficial to the efficiency of the formulation than the
reduction in the value for the big-M.

Table 2: Summary of the Base Instances Results

1st Stage 2nd Stage

Group Instance Scheduled Defences Time (s) G HP Z Obj Function Time (s) Gap

A1 avg 29.3 4.7 -319 236 10.7 -576 4.3 0
A2 avg 30 3.3 -125.3 240.3 48.7 320 135.3 0
A3 avg 30 19.7 -54.7 258 66.3 688 8047.3 1.6
B1 avg 40 16 -477.3 299 9.7 -993 5.7 0
B2 avg 40 14 -157.3 330.3 60.3 482.3 338.3 0
B3 avg 40 42 -90 326.3 84 787 10800 15.9
C1 avg 49.3 20 -601.7 389.3 21.7 -1195.3 7 0
C2 avg 50 30.3 -201.7 401.7 77.3 553 3272.3 0
C3 avg 50 49 -120 413.7 104 969 10800 18.3

5.4 Two Stage Augmented ε - Constraint
Approach

In this approach only instances from groups A1 and A2 were
tested. This was the choice due to the approach in question
not being as efficient as the first one, as it must iterate be-
tween several different lower bounds and solve the model
numerous times, until it reaches its conclusion.

5.4.1 Second Stage Initialisation

While all the points (MP, NP, MZ and NZ) for group A1
were found within 6 seconds, the same is not true for larger
instances, that is, the group A2. Two specific points seem
considerably harder to find, the maximum value for Z and
the N point for HP. What they have in common is that in
both, the main objective being maximised is Z, which is the

one associated with a big-M formulation, thus, we can con-
clude that this objective may be the main bottleneck when
solving larger instances.

5.4.2 Skipped Iterations and Number of Solutions

In the tested instances, the reduction of the availability per-
centage, in general, led to a slightly smaller number of ef-
fective iterations, proving that reducing the available times-
slots for committee members leads to less feasible schedules
and, in consequence, less effective iterations. Furthermore,
both the average number of effective solutions and infeasible
iterations decreases. On the contrary, the number of skipped
iterations increases with the decrease in availability. More-
over, the infeasible skipped iterations had a much higher oc-
currence than the feasible skipped iterations, meaning that
the mechanism to skip infeasible solutions ends up gaining

8



considerably more time than the other one.

5.4.3 Time to Solve each Iteration

While reducing the number of possible iterations always led
to a decrease in the total time it took to solve the instance,
there was not a noticeable trend in the average iteration
time. Additionally, following a similar trend to the a-Priori
Approach, we can verify that the instance group with the
highest availability percentage, in this case A2, took the
longest to solve, with one instance, namely the second in-
stance in group A2 taking up to three hours to solve, in-
cluding the initialization time, whereas the maximum time
an instance of this group had taken with the first approach
was of only three and a half minutes.

Comparing the results from both approaches, for the
group A1, which was less complex to solve, the average time
to solve the iterations was similar to the time it took to solve
the same instances with the first approach. However, for
group A2 there was a considerable increase in the average
iteration time when compared to the first results.

A defined trend can be found in the behaviour of the time
it takes to solve each iteration. As previously explained, the
proposed augmented ε - constraint approach increases the
lower bounds for two of the three objectives, namely the

compactness and time-slot preference objectives. Firstly,
both lower bounds start at their n points and then the
compactness objective is increased until it reaches its max-
imum value or there is an infeasible iteration, after which
the value for the lower bound for the compactness objec-
tive is reset to n and the time-slot objective lower bound is
increased, and the compactness objective starts being incre-
mented again and so on and so forth until both maximum
values are reached. Up to a certain point, the increase in
the time to solve each effective iteration is directly linked to
the aforementioned lower bound increments, with the time
to solve increasing up to the point where the compactness
objective is reset, after which the time to solve drops again.
That behaviour then stops after the first infeasible iteration
is reached, after which the high variance stops and the times
with each compactness objective lower bound reset start de-
creasing instead of increasing as was seen up until this point.
In the first part of this behaviour, what can be concluded
is that the increased difficulty in finding solutions coming
from the increasing lower bounds leads to larger computa-
tional solve times, whereas in the second part, where the
computational times stabilise and are almost instant, the
fact that there are fewer possible solutions has the opposite
effect, and makes the model faster.

Table 3: Average Time per Effective Iteration and Estimated Time Gained Through Skipping Iterations

Effective Iteration Time
Solutions Infeasible Estimated Time Gained

Group Instance Average Total Average Total Feasible Infeasible

ε = 1
6
Iterations = 49

A1 avg 4.3 72 4.4 13.7 5.9 124.5
A2 avg 369.7 8073.3 2116.2 9002.7 848.4 45983.7

ε = 1
4
Iterations = 25

A1 avg 4 40 4 10.7 4 45.3
A2 avg 608.3 7757.3 855 2565 1038 7359.3

ε = 1
2
Iterations = 9

A1 avg 3.9 18 4 6.7 0 11.7
A2 avg 562 3277 111.3 222.7 0 209.3

6 User Guide

To make both solutions available to the decision-maker, they
were implemented using the Python language together with
the commercially available solver Gurobi.

Furthermore, all the necessary inputs to the models, in-
cluding sets and parameters, can be introduced in a set
of Excel sheets, also made available to the decision-maker,
which the python application will then import. Moreover,
not all of these inputs have to be written, as some of them
can be inferred from the values of other ones, for example
the table ICM or the set Q, which are automatically created
based on other information.

Just like the inputs, the outputs are also given through
another Excel sheet, in a framework that is easier to read
than the one from the python application.

7 Conclusions and Future Work

The scheduling of thesis defences in the Department of En-
gineering and Management at Instituto Superior Técnico is
the responsibility of the department’s secretary. While there
is already some literature on this topic, it is a relatively
recent subject of interest within the Academic Scheduling
field.

Based on the characteristics of the problem at hand and
taking some inspiration on several other works in the litera-
ture, a mixed integer linear programming model to represent
our case was formulated, with reference to its sets, parame-
ters variables and constraints.

Four different objectives were considered. The first one
is the minimisation of the thesis defences that would go
unscheduled. The second objective aims to give the com-
mittee members the liberty of giving different preference

9



levels to their available time-slots. The third objective com-
prises the minimisation of the number of days committee
members have defences scheduled on. This is a concern as
most committee members do not usually travel to the Tagus-
park Campus. Lastly, the final objective was to ensure that
within the same day, the schedule for a certain committee
member is as compact as possible.

Two distinct approaches being proposed. Both ap-
proaches were divided into two stages, with the first stage
being similar. In this stage the objective of scheduling as
many defences as possible is maximised. Then the second
stage is what differentiates both methods, as they tackle the
multi-objective nature of the problem differently.

The first approach was named Two Stage a Priori Ap-
proach. The second proposed method was named Two Stage
Augmented ε - Constraint Approach which is based on the
ε - constraint method, with the Two Stage a Priori Ap-
proach being considerably faster in its resolution than the
Augmented ε - Constraint Approach, as it will only solve
the model twice, whereas the second will have multiple iter-
ations, depending on the value for the ε, on the other hand,
the Augmented ε - Constraint Approach provides a more
complete notion of the solution space and suggests several
possible solutions for the decision-maker to chose from with-
out the necessity of inputting weights for each objective.

To test both approaches, an instance generator was cre-
ated and several instances with varying dimensions were
randomly generated.

The usefulness of the first stage was proven, as it allowed
the scheduling of several instances where one of the defences
could not be scheduled due to incompatible availability be-
tween committee members.

The effect of varying several parameters was also tested,
with some of the variations leading to considerably longer
solve times, it is then left to the decision-makers which pa-
rameters are the best for their preferences.

A tool to facilitate the input and output of data to the
model was also created.

Due to the Covid-19 pandemic and other restrictions it
was not possible to apply either approach to real world in-
stances. Thus, the main goal going forward would be to
test both approaches using a real world instance and organ-
ise the scheduling of thesis defences during one of the peaks
in defences to be scheduled in the end of the semesters.

Then, it would be possible to monitor both the objective
improvement of the quality of the schedules.
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nologia e ensino superior. Diário da República n.º 157/2018, Série I,
2018.

[2] Barnhart, C., Bertsimas, D., Caramanis, C., and Fearing, D. Equi-
table and efficient coordination in traffic flow management. Trans-
portation Science 46, 2 (2012), 262–280.

[3] Battistutta, M., Ceschia, S., Cesco, F. D., Gaspero, L. D., and
Schaerf, A. Modelling and solving the thesis defense timetabling
problem. Journal of the Operational Research Society 70, 7 (2019),
1039–1050.

[4] Braekers, K., Hartl, R. F., Parragh, S. N., and Tricoire, F. A
bi-objective home care scheduling problem: Analyzing the trade-off

between costs and client inconvenience. European Journal of Opera-
tional Research 248, 2 (2016), 428–443.

[5] Burke, E. K., and Bykov, Y. The late acceptance Hill-Climbing
heuristic. European Journal of Operational Research 258, 1 (APR
2017), 70–78.

[6] Dung, P., Trung, H., Hoang, T., and Hoang, N. A java library for
constraint-based local search: Application to the master thesis defense
timetabling problem. pp. 1–8.
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